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The theory of one-electron perturbations is developed in the context of the self-consistent
LCAO treatment of molecular wavefunctions. A numerical method of calculating changes in
the charge and bond order matrix due to one-electron perturbations is described. The method
is used to compute self-consistent atom-atom polarizabilities for a number of conjugated
hydrocarbons. The results are applied to spin-density calculations and to a discussion of
chemical reactivity.

Im Rahmen des SCF-LCAQ-Verfahrens wird eine Einteilchen-Stérung behandelt und ein
numerisches Verfahren zur Berechnung der Anderung der Matrix der Bindungsordnung an-
gegeben. In der vorliegenden Arbeit wird diese Methode beniitzt, um Atom-Atom-Polarisier-
barkeiten und Spindichten fiir eine Anzahl von Kohlenwasserstoffen zu berechnen sowie ihre
chemische Reaktivitét zu diskutieren.

La théorie des perturbations monoélectroniques est developpée au contexte du procédé
LCAO autocohérent de fonctions d’ondes moléculaires. On déerit une méthode numérique
pour le calcul de changements dans la matrice de charge et d’ordre de liaison dis aux perturba-
tions monoélectroniques. Suivant cette méthode sont calculées les polarisabilités atome-atome
autocohérentes pour un nombre d’hydrocarbures conjugués. A ’aide des résultats on calcule
des densités de spin, et discute la réactivités chimiques.

1. Introduction

Perturbation theory plays a most useful part in the quantum mechanical
theory of molecules. In particular, the perturbation theory introduced by CourLsox
and Longurr-Hiceixs [2] into the Hiickel theory of conjugated molecules has
enabled electronically similar molecules to be related to one another. The theory
enables changes in the charge and bond order matrix arising from small changes
in the « or § integrals to be computed. This is especially appropriate for a discus-
sion of the inductive effects produced when a heteroatom is substituted into a
hydrocarbon. The theory has also been applied to certain problems in the theory
of chemical reactivity [3, 18].

The Hiickel theory of conjugated molecules is now known to be an unreliable
approximation and has been superceded by the self-consistent form of the LCAO
theory. A perturbation theory analogous to that of Covisoxn and LoNGUET-
Higetxs is therefore needed in this new context. Self-consistent perturbation
theories based on the Hartree-Fock equations have been developed earlier {8, 14]
and some applications to conjugated systems have been made {4, 9, 15].

In this paper we describe an iteration method for the direct caleulation of
first and second order changes in the bond order matrix, the total energy, the



Self-Consistent Perturbation Theory for Conjugated Molecules. I 149

various molecular orbitals and their energies produced by a perturbation which is
the sum of one-electron operators. The method is used to compute atom-atom
polarizabilities for a number of hydrocarbons. These polarizabilities should be of
direct use in discussions of the shifts of charge when a heteroatom is substituted
into one of these hydrocarbons. We have nsed them to discuss the spin densities
of hydrocarbon ions and the relative susceptibilities of the different atoms to
attack by free radicals.

Self-consistent perturbation theory can also be used to discuss such topics as
electric polarizabilities of conjugated molecules and the spectra of heteromolecules.
Some of these topics will be taken up in following papers.

2, Perturbation by One-Electron Operators

In the molecular orbital theory the ground state of a conjugated molecule is
represented by a determinant of doubly occupied orbitals. Such a wave funection
is stable with respect to perturbations which are the sum of one-electron operators
[5] and consequently the perturbed wave function can be represented, to the
same approximation, as a determinant of perturbed molecular orbitals. The first
and higher order corrections to the original molecular orbitals can be obtained by
applying perturbation theory to the molecular orbital equations.

If the molecular orbitals are expressed as linear combinations of atomic
orbitals wy,

Yi= 2 wrr
the equations determining the {ay} and the orbital energies E; will be [6, 16]
2 (Fps — Hi Srs) as = 0 (2.1)
where 8
Sps = [ ) ws dr (2.2)
Frs=hes+ 5 > Put {207 | us) — (tr | su)} (2.3)
and “

(bu | 7s) = jwf(f) wy (2);1*0)7 (1) ws (2) 7y,

hys = Jw’f (—3V2 — Sz fr) wsdr. (2.4)
The charge density and bond order matrix P is defined by
Prs=2 3 ayaf (2.5)

ocoupied
orbitals

and is related to the spinless first order density matrix for the nnperturbed mole-
cule by

P (1,1)=73 Pyro; (1)ws (1). (2.6)
The one electron operators in the Hamiltonian will be changed in the per-
turbed equations by an amount

A2 Z (i)

i
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5o that the effect of the perturbation is to change hys to Ay + Az where

2rs = [wf L wsdr. (2.7
The first order change in Fys will not be simply 2, for there will be first order
changes in P which must be included.

To proceed further, therefore, we write all our quantities as power series in the
perturbation parameter 1. Including terms up to second order we have

Fps = FO + AF, + 22 F, (2.8)
iy = 0§y + Ay, + A2 aj, (2.9)
Pys = P+ AP -+ 2 P, (2.10)
By = B} + AE; + 2 B (2.11)
and by substituting in (2.3) and (2.5) we obtain
FO o hys 4 % f; PY {2 (tr | us) — (tr | su)} (2.12a)
Fly= 2t} 5 P2 (r | us) — (ir | su)} (2.12b)
P = 3 > P2 (tr | us) — (tr | su)} (2.12¢)
and :
P =2 Oceuﬁpiedagr ad¥ (2.13a)
orbitals
P = 2%3“(“?’ s gy Ay (2.13b)
orbitals
Pro=2 3 (ayaiy 4 ad a + ag alt) . (2.18¢)

accupied
orbitals

The orbitals used in the derivation of (2.1) are assumed orthonormal and this
imposes restrictions on the g, and a;, .In particular we have that

S ad Spsaz, =0 all 7. (2.14)
By substituting Hq. (2.11), 2.12) and (2.13) into (2.1) we obtain the equations

. . - 2
determining the coefficients af,, a;,, a;,. These are

Z (F?r — Ssr E?) a’?r =0 (215&)
S (FY — Ssr B9) 0y = 3 (Bj Ssr — Fy) af, (2.15b)

Z (Fgr - SST ES) (L;/,. = Z (E; SST - F;T) a;Ir + Z (E: SST - F;’lr) a'?r : (2150)
Note that Eq. (2.15b) is linear in the @), which implies that the value of a;, due
to two perturbations acting simultaneously is the sum of the a}, due to each
perturbation acting by itself. From (2.15b) and (2.15¢) the relations

B 3 alf Serafy = 3 ol B, of, (2.16a)
and
B S Al Sl = Sl (Fy s+ Fy aly — B Ser aly) (2.161)

can be obtained.
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3. Iterative Solution of the Equations

Although (2.15b) and (2.15¢) are linear equations they involve all the un-
known coetficients simultaneously and so it is much simpler to solve them itera-
tively. A straightforward way of solving them would be as follows:

(i) Calculate F2, and the af, in the usual way.
(ii) Guess the first order corrections to the orbitals, aj,.
(iii) From these form the P, and F,,. [Alternatively (ii) may be omitted and
Py, guessed instead].
(iv) For each occupied orbital  find E; from (2.16a) and substitute in (2.15b)
to find an improved set of a;,. Note that (2.15b) may be written in matrix form

(F°— B} S)a; = (B; S— F)a} (3.1)
from which is obtained
& ~ (P~ E; $) (B} S— F) . (32)

Since E? satisfies the equation | F® — B} § | = 0 (3.1) can only be solved subject
to the condition (2.14). In practice equation (2.14) needs to be substituted for
one of the equationsin (3.1). This substitution must be asssumed if the expression
involving the inverse matrix in (3.2) is to be properly defined. If there is degene-
racy among the EY there is a further difficulty in solving (3.1) and the proper zero
order orbitals must be chosen and the problem treated as it is when degeneracy
oceurs in ordinary perturbation theory.

(v) Once the new set of orbitals a; have been found the whole process must be
repeated until they are consistent.

The main difficulty with the above procedure is that for each occupied orbital
i a different matrix has to be inverted to substitute in (3.2). This can be avoided
by applying an idea used in ordinary perturbation theory. Suppose, for con-
venience, that the atomic orbitals are orthonormal. If they are not, as when Slater
orbitals are used, they can be made so with Loéwdin’s procedure [10]. When this
is done § becomes the unit matrix I. The zero order orbitals and orbital energies
will then be the eigenvectors and eigenvalues of FC. The unitary matrix U which
is formed from these eigenvectors will diagonalize F°.

Multiplying (3.1) on the left by U and writing b; for Ut a; gives
(B} — BY) (b;); = — (U F' Uy 1]
so that

Wt F U

(b)) = mem JFE (8.3)

while (2.14) implies that (b;); = 0.
These expressions can be used to find the b; very quickly without having to
invert matrices. The matrix P’ can then be found from the relations

P =2(g+q")
where
qg=Ur Ut (3.4)
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and
riy = (by)f if 7 is an occupied orbital

=0 otherwise .

Our experience with using an electronic computer to solve these equations has been that
(3.3) and (3.4) lead to saving in time both in programing and computing. Even so a fair number
of iterations are usually needed for convergence although naturally this depends on how good
the choice of starting orbitals is. The rate of convergence can be accelerated by employing
an extrapolation formula such as that found useful in Harr and Harpisson’s work in a similar
context [7]. As a practical point, however, we have found it better to let the iterations settle
down a little before using the extrapolation formula since otherwise a bad choice of starting
orbitals can lead to some trouble.

4. The Total Energy
The total energy W for the ground state is given by the formula

W =573 Ps (Fps + hys) . (4.1)
Expressing W as a power series in A i.e.
W=We+ AW + 22 W + ... (4.2)
we can obtain the first order and second order corrections as
PV/ = % Z (F;?s + hTS) P:sr + Jﬁ z (F;s + ZTS) Pgr = Z Zrs Pgr (43)

and
W' =33 Py (Fly + ) + 3 2 Py (Fp + 21s) + 3 3 P Fro =52 205 Py (44)

so that W’ depends only on the zero order P® and W" only on the first order P’'.

5. Atom-Afom Polarizabilities of Conjugated Molecules

For 7 electron systems the Pariser-Parr-Pople schemes enable the expressions
for F* and F’ to be simplified to

0 0 1 po
Frs:575+575 z‘puu'}}’lﬁ“~ 2P7‘s7/7‘5
3
; ’ 1 5
F¢s:zrs+67‘8ZPuuV’MTAEPrsyTS
U

where the {y,s} are the usual Pariser-Parr integrals and
,BW' = — z Yur
wEr
Brs =058 if 7, s refer to neighbouring atoms

=0 otherwise,

The overlap matrix § is assumed to be the unit matrix. In the calculations pres-
ented in this paper the integrals were given the values y;r = — 2.301 § and yps =
— 1.485 8 where r and s refer to neighbouring atoms and § = — 4.78 eV. The
remaining integrals were computed using the method described by Sxypmr and
Awos [17].

The atom-atom polarizabilities sy, have been defined for Hiickel perturbation
theory by Couvrsox and Loneurr-Hiceins [2] and represent the changes in the
charge of the rth atom due to a perturbation at the uth atom of Az, = f. In the
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self-consistent case we have the analogous definition that 7y, = P, when zy =
[, v =1t = u and zy; =0 otherwise. Similarly the self-consistent bond-atom polari-
zabilities and bond-bond polarizabilities can be defined but they are not so im-
portant as the atom-atom polarizabilities.

9 e}
8 9 I 8 I
5 14 I 5 8 14 o 7 9 2
/ 13 12 2
6 3 2 3 6 0 3
5 10 4 6 5 4 3 5 4
4 5 |
3
10 9 8 2 3 6 2
2 6 o 7 | 4 ; ,
e 7
8 I 12 6 5 4
2 4 6 2 4
| 3 5 ! 3
Fig. 1. Molecules considered in this paper
Table 1. Self-consistent atom-atom polarizabilities mwur
w u U
r 1 y 1 2 r 1 2 3
1 .560 1 601 —.478 1 620 471 016
2 -.276 2 —478 513 2 —-47 513 —.050
3 054 3 —.003 -.031 3 016 —.050 .552
4 -.116 4 -120 -.003 4 —-102 -.006 —.410
Benzeno . 5 020  —.006  —.006
Butadiene 6 -.083 020 -.102
Hexatriene
w k74
y 1 2 4 5 6 r 1 2
1 607 -.292 054  —.075 044 1 595 —.345
2 —.292 588 —.075 047 ~.071 2 -.345 .569
3 065  —.292 018 —.082 044 3 064  -—-.225
4 054  —.075 623 —.307 .078 4 —150 .064
5 —.075 047 —.307 617  -.305 5 .008 .010
6 044 —0M 078  -.305 615 6 010 —.036
7 —.082 047 -1t 084  —.305 7 —.017 .007
8 018  —.075 054 -1 078 8 —.023 —.017
9 —.236 061  —.087 056  —.089 9 —.176 .043
10 -.104 061 —.247 077 —.089 10 03¢ —.071
Azulene Naphthalene

11%
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Table 1 (Continued)

u %
7 2 3 4 r 1 2 9
1 —.255 .048 ~.113 1 598 ~.362 -.020
2 590 -.285 063 2 -.362 570 —.029
3 -—-.285 567 -.277 3 066 -.207 013
4 .063 —-.277 576 4 —-A157 066 .006
5 .15 .054 —-.277 5 001 001 006
6 054 —-.A15 .063 [ 001 -.015 013
i .005 014 018 7 -.005 —.004 -.029
8 —.051 .003 -.014 8 —.002 —.005 -.020
9 .003 —.007 —.004 9 -.020 -.029 647
10 -.014 —.004 -.017 10 006 013 —-.199
11 .006 -.004 -.004 11 —.146 037 -.234
12 —.002 006 -.014 12 024 —-.055 041
. , 13 .009 —.020 041
Dipheny 14 —.01 01 234
Anthracene
- U
7 1 2 3 4 10
1 595  -.323 064 -137  -.023
2 -.323 512 245 063 —.004
3 064 —.245 575 -.319 015
4 —137 063 —.319 594 013
5 011 -.012 010 —.049 005
6 —.010 -.002 -.018 010 —.042
7000 015 -.002  —.012 005
8 —.01 001 —.010 o011 —.021
9 —.02 005 —.042 005 —.400
10 —.023  —.004 015 013 585
11 —.207 047 -.088 040 —.135
12 .01 —.088 051 —.214 031
13 007 015 -.003 000 —-.079
14 011 -.014 012 —.005 048
Phenanthrene

We have calculated atom-atom polarizabilities for the hydrocarbons shown
in Fig. 1. All C-C bond lengths were assumed to be 1.4 A and all angles 120°
except for azulene whose rings were taken to be regular polygons. The molecules
were all taken as planar although this is rather a bad approximation for diphenyl.

The values of the sy, are given in Tab. 1. The overall pattern agrees quite
well with previous calculations [4, 9, 15] although the numerical values differ
slightly due to different values of the Pariser and Parr integrals. The self consistent
atom-atom polarizabilities are generally much larger than the corresponding
Hiickel ones and some of the characteristic properties of Hiickel polarizabilities
— such as, for example, the alternation in sign — are no longer to be found in the
self consistent ones.
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6. Applications

In this section we consider three rather simple applications of the perturbation
method. Further applications will be dealt with in future papers.

Firstly we have considered the charge distribution in a benzene ring due to the
inductive effect of a heteroatom substituted for the C-H bond at position 1. We
have assumed that the presence of the hetero-atom can be represented completely
by changing the value of A, in Eq. (2.3). This change is then represented by a
perturbation Az;. We have computed the charge distribution for several values
of 1 (z; = f) using both the perturbation method taken to first order and the
exact method in which the original LCAO equations are solved again. The results

Table 2. Comparison of Charges Calculated by Accurate and Perturbation Methods for mono-
substituted Benzene

A +041 +0.3 + 0.5 + 0.75 +1.0

P E P g P B P E P i)
¢ .056 .057 168 .168 280 275 420 .399 .560  .507
A 028  .028 .083 .083 438 136 207 196 276 .249
g5 005 .006 .016 .016 027 .027 040  .039 054 .049
A 02 012 .035 .035 .058 .058 087 .084 416 108

G1> 9as G35 ¢, are the charges at atoms 1, 2, 3, 4.
P = perturbation method; ¥ = exact calculation. The signs of ¢, and g, are the same as
that of 4 and the signs of ¢, and g, opposite to that of .

are given in Tab. 2. The table shows clearly that for values of | 1| up to about
0.5 second order perturbation theory gives results which are almost identical to
the exact calculations. Beyond this point the two treatments begin to diverge
presumably because third order effects become important. Even so, when 4 ~ + 1
the overall charge distributions predicted by the two methods are qualitively
similar although the quantitative agreement is no longer very good.

As well as changing k., to allow for the substituent at the rth atom it seems
likely that yyr should be changed and probably also the values of 8 and vy for
the bonds between the substituent and the nearest neighbour carbon atoms. In
so far as these change the off-diagonal elements of F; they will not change the
charge densities to first order. However, if we expand the 7,5 in terms of the
parameter A and substitute into the diagonal elements of F0 and F’ we obtain

0 __ 30 0 0 L po .0
Fss’ ss+ ZPuuyus_2 Pssyss
%

Fos = 255 + > leygs -3 P;sygs + Z(Pgu - 1)%;8 + 3 Pgs')’;s (6.1)
so that the variation in the y,s can be allowed for by replacing the perturbation
255 OY

s + g (P — 1) 77,48 +% Py V;s : (6.2)
For alternant hydrocarbons this simplifies to

Zss -+ % 7;3 (6.3)
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since PY, = 1 all u. Also since z; and y,, will be zero except at the substituted
atom, the change in the Coulomb integral can be allowed for either by changing
zry Or by leaving this alone and changing 1. For example the work of McWErENY
and Pracock [13] on nitrogen heterocyclics suggests that with z, at the sub-
stituent equal to §, 4 will equal 0.35. With this value of iz, they change v by
approximately —0.30 § so that y,, —0.86 . Therefore we can either set 2 = 0.35
and zpr = 0.57 f or 1= 0.20 and 2z, = 1.0 §, in both cases thus allowing for the
variation in .

As a second application we have considered the spin density distribution in
the negative ions of naphthalene and anthracene. Itis well known that the simplest
treatments of this problem lead to computed spin density distributions which are
not very satisfactory. MoLACHLAN has introduced a most convenient approximate
method for calculating spin densities which agree quite well with experiment [12].
The formula obtained by MoLacHLAN for the spin density at the rth carbon atom
is

or = Cgr - M Z nfs cgs (6.4)

where the {cos} are the Hiickel coefficients of the lowest unoceupied orbitalinthe
ground state and 7, are the Hiickel atom-atom polarizabilities. The parameter M
was given an empirical value between 1.0 and 1.2.

Table 3. Comparison of Spin-densities Calculated by McLachlan’s
Method and Experiment

Calculated
Molecule Atom MoLACHLAN This paper Experimental
Naphthalene 1 222 209 203
2 047 .054 .076
9 ~.037 —.027 (—.058)
Anthracene 1 418 108 A13
2 .032 040 .064
9 .256 235 230
11 ~.028 -.015 (—.042)

Work by Sxyper and Amos [17] implies that an equivalent formula holds if
the Hiickel coefficients and polarizabilities are replaced by self-consistent ones
provided M is given a value between 3 and 5. Setting M = % we have computed
or for naphthalene and anthracene from (6.4) using self consistent values for the
cos and 7ys. The results are given in Tab. 3 and for comparison the results of
McLACHLAN’s original calculation using Hiickel parameters and the ‘experimental’
values obtained from e.s.r. hyperfine splitting data [1] via the McCoNNELL rela-
tion [17] are also included. Our new values agree reasonably well with experiment
and are slightly better than McLacHLAN’s Hiickel ones. They could probably be
further improved by a different choice of M coupled with the use of a more elab-
orate relation to obtain the ‘experimental’ spin densities from the e.s.r. data.

A rather naive approach to chemical reactivity suggests that the most reactive
site in a molecule with respect to an attacking positive reagent is that with the
largest charge density g¢,. For alternant hydrocarbons ¢,=0 at all positions so
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that the next measure of reactivity will be the auto polarizabilities 7. In fact
the Hiickel polarizabilities do correlate reasonably well with experimental evidence
of reactivity so it is interesting to examine it self consistent polarizabilities are
equally successful. In Tab. 4 we include the reactivity constants for electrophilic
aromatic substitution taken from a table of results obtained by STREITWIESER
[18] from a consideration of the available experimental evidence and these experi-
mental reactivities may be compared with the Hiickel and self-consistent auto
polarizabilities. Unfortunately the experimental results are not accurate enough
to enable any general conclusions to be drawn. Both the Hiickel and self-consistent
autopolarizabilities seem able to distinguish between very reactive and very
unreactive positions and this is probably all that can be expected. There are,
however, some anomalies namely the 2 position of anthracence, the 4 position of

Table 4. Index of Chemical Reactivity versus Autopolarizabilities

Experimental  Auto-Polarizabilities®

Hydrocarbon Position Reactivity® S.C.F. Hiickel
Benzene 1 ~7.8 —.035 —.045
Naphthalene 1 0 0 0
2 -34 —.026 -.038
Anthracene 1 141 +.003 +.011
> 2 0 -.025 -.032
9 8.1 +.052 +.083
Phenanthrene 1 ~0.2 0 —.004
2 —-2.5 —-.023 —.040
3 ~0.5 —.020 —.034
4 -2.7 -.001 -.014
9 0.6 -.010 -.001
Diphenyl 2 -1.7 -.005 -.019
4 -1.7 -.019 -.032

= Relative to the 1-position of naphthalene.

phenanthrene and the 2 and 4 positions of diphenyl. The last three are almost
certainly due to steric effects and the fact that diphenyl is not planar casts some
doubts on the theoretical values of 7, for this molecule. The 2 position of anthra-
cene is rather more puzzling and further experimental data on this would be
welcome.
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